# A Highly Reduced Vanadium(III/IV) Polyoxovanadate Comprising an Octavanadyl Square-Prism Surrounding a Dimetallic Vanadium(III) Fragment 

Rebecca H. Laye, ${ }^{\dagger}$ Qiang Wei, ${ }^{\dagger}$ Pamela V. Mason, ${ }^{\dagger}$ Maheswaran Shanmugam, ${ }^{\dagger}$ Simon J. Teat, ${ }^{\ddagger}$ Euan K. Brechin, ${ }^{\dagger}$ David Collison, ${ }^{\dagger}$ and Eric J. L. McInnes*, $\dagger$<br>School of Chemistry, The University of Manchester, Manchester M13 9PL, UK, and CCLRC Daresbury Laboratory, Daresbury, Cheshire WA4 4AD, UK

Received April 19, 2006; E-mail: eric.mcinnes@manchester.ac.uk
"Fully reduced" polyoxo(alkoxo)vanadates-usually taken to mean those exclusively containing $\mathrm{d}^{1}$ metal ions, often stabilized by organic capping ligands - are rather rare ${ }^{1,2}$ compared to their $\mathrm{d}^{0}$ analogues but have attracted significant interest due to their important redox ${ }^{3}$ and magnetic ${ }^{4}$ properties. However, more highly reduced examples containing $\mathrm{d}^{2}$ ions remain elusive, beyond simple tri- or tetrametallic species, despite their obvious potential in these areas. We have been developing the use of 1,2,3-triazoles as rigid bridging ligands to generate paramagnetic cage complexes with useful magnetic properties, with successes including iron(III) clusters with huge electronic spin ground states, ${ }^{5}$ and we have now started to explore their chemistry with the vanadium(III) ion in an effort to isolate low-valent vanadium cages. Here we report our preliminary results in this area, with the unexpected formation of a highly reduced vanadium(III/IV) polyoxovanadate. This complex is remarkable because of the following: (i) it is based on a squareprismatic, boxlike cluster of oxovanadium(IV). The square-based topology, unique for a polyoxometalate, is generated via the 1,3bridging mode of the triazole, analogous to the role of $4,4^{\prime}$ bipyridine in the self-assembly chemistry of molecular squares; ${ }^{6}$ (ii) the oxovanadium(IV) "box" contains a covalently bound vanadium(III) dimer to give an overall very highly reduced polyoxovanadate. Preliminary magnetic studies are reported.

Reaction of $\mathrm{VCl}_{3}(0.25 \mathrm{~g})$ with 5,6-dimethylbenzotriazole ( $\mathrm{Me}_{2^{-}}$ btaH; 0.46 g ) and $\mathrm{NaOMe}(0.17 \mathrm{~g})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ at room temperature under an inert atmosphere for 18 h followed by reduction of the volume and layering with anhydrous, degassed diethyl ether gives orange-brown crystals of $\mathbf{1}(10 \%))^{7}$ Single-crystal X-ray diffraction ${ }^{7}$ reveals 1 to be the mixed-valence $V^{\text {III/V }}$ species $\left[\left(\mathrm{V}^{\mathrm{IV}} \mathrm{O}\right)_{8} \mathrm{~V}^{\mathrm{II}}{ }_{2}\left(\mathrm{Me}_{2} \mathrm{bta}\right)_{8}(\mathrm{OH})_{4}(\mathrm{OMe})_{10}\right]$ (Figure 1). The molecule lies on a $4 / \mathrm{mmm}$ site in the tetragonal $14 / \mathrm{mmm}$ space group, giving just two vanadium ions in the asymmetric unit. ${ }^{8}$ One of these (V1) is $\mathrm{V}^{\mathrm{IV}}$ as vanadyl, easily identified by the short terminal $\mathrm{V}=\mathrm{O}$ distance $1.596 \AA$, and the remaining metal ion (V2) is $V^{\text {III }}$ (see below). The polyhedron defined by the vanadyl ions is a perfect square-prismatic "box" with dimensions of $6.030(2) \AA \times 6.030(2) \AA[\mathrm{V} 1 \cdots \mathrm{~V} 1 \mathrm{D}$ and symmetry equivalents (s.e.) $] \times 2.954(2) \AA(\mathrm{V} 1 \cdots \mathrm{~V} 1 \mathrm{~A}$ and s.e.), and with the terminal oxides oriented outward from the cluster.

The edges of the square faces of the $(\mathrm{VO})_{8}$ box are formed by 1,3 -coordinated $\mathrm{Me}_{2}$ bta ${ }^{-}$bridges. Four of these are $\mu_{2}$-bridging, and four are $\mu_{3}$ being further coordinated to a central vanadium ion (V2 or s.e.) via their middle, 2-nitrogen. The short edges of the box (V1-V1A and s.e.) are bridged by two $\mu_{2}$-OMe (O2) and a $\mu_{3}$-hydroxide (O3) which also binds to V2. O3 is trans to the terminal oxide resulting in a relatively long $\mathrm{V} 1-\mathrm{O} 3$ distance. O 3 is distinctly nonplanar (V1-O3-V1A $81.58^{\circ}, \mathrm{V} 1-\mathrm{O} 3-\mathrm{V} 2128.1^{\circ}$;

[^0]

Figure 1. Molecular structure of $\left[(\mathrm{VO})_{8} \mathrm{~V}_{2}\left(\mathrm{Me}_{2} \mathrm{bta}\right)_{8}(\mathrm{OH})_{4}(\mathrm{OMe})_{10}\right]$ (1) viewed (a) near-normal to the square face, (b) near side-on to the square face. Bond lengths at $\mathrm{V}^{\mathrm{IV}}(\AA): \mathrm{V}=\mathrm{O} 1.596(3), \mathrm{V}-\mu_{2} \mathrm{O}(\mathrm{Me}) 1.984(3), \mathrm{V}-$ $\mu_{3} \mathrm{O}$ 2.261(3), $\mathrm{V}-\mathrm{N}\left(\mu_{2}-\mathrm{Me}_{2}\right.$ bta) 2.108(3). Bond lengths at $\mathrm{V}^{\mathrm{III}}(\AA): \mathrm{V}-$ $\mu_{3} \mathrm{O} 1.830(3), \mathrm{V}-\mu_{2} \mathrm{O}(\mathrm{Me}) 1.949(4), \mathrm{V}-\mathrm{N}\left(\mu_{3}-\mathrm{Me}_{2}\right.$ bta) 2.219(4). Selected interbond angles (deg): V1-O2-V1A 96.24(16), V1-O3-V1A 81.58(12), V1-O3-V2 128.10(3), V2-O3-V2E 70.84(17), V2-O4-V2F 100.6(2). V, green; O, red; N, blue; C, black; H omitted for clarity. See Supporting Information Figure 1 for full labeling of symmetry equivalent positions.
O3 is $0.54 \AA$ out of the V1, V1A, V2 plane), and bond valence sum (BVS) analysis ${ }^{9}$ supports formulation as hydroxide rather than oxide. ${ }^{10}$
The $(\mathrm{VO})_{8}$ box is bound to two internal V ions (V2, V2B) that form a $\mathrm{V}_{2}\left(\mu_{2}-\mathrm{OMe}\right)_{2}$ dimer with a V2 $\ldots \mathrm{V} 2 \mathrm{~B}$ distance of $3.000(3)$ $\AA . \mathrm{V} 2$ also binds to the two $\mu_{3}-\mathrm{Me}_{2} \mathrm{bta}^{-}$on the edges of the box and to the hydroxides O 3 and s.e. The coordination at V 2 is pseudooctahedral cis $-\mathrm{O}_{4} \mathrm{~N}_{2}$, and the metric parameters are consistent with


Figure 2. Polyhedral representation of 1: green octahedra are cis- $\left\{\mathrm{O}_{4} \mathrm{~N}_{2}\right\}$ coordination spheres at each V.
formulation as $\mathrm{V}^{\mathrm{III}}$, confirmed by BVS analysis, as is also required by charge balance. This is also consistent with the magnetic data (see below).

A polyhedral representation shows that the pairs of ions on the short edges of the $(\mathrm{VO})_{8}$ square-prism form face-sharing bioctahedra, each of which vertex shares via a single oxide with the central edge-sharing bioctahedron of $\mathrm{V}^{\text {III }}$ (Figure 2).

The formation of a vanadyl cluster was unexpected and is presumably due to serendipitous oxidation of the $\mathrm{V}^{\text {III }}$ starting material. Although we have subsequently found that $\mathbf{1}$ can also be prepared from more rational reactions of $\{\mathrm{VO}\}^{2+}, \mathrm{V}^{\mathrm{III}}$, and Hbta reagents [solvothermal reaction of $(\mathrm{VO}) \mathrm{SO}_{4}(0.7 \mathrm{mmol}), \mathrm{VCl}_{3}(0.7$ mmol ), and $\mathrm{Hbta}(2.6 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ at $\left.100^{\circ} \mathrm{C}\right]$, the yields are not significantly improved from the original preparation (ca. $12 \%$ ). It is the formation of the cage by partial oxidation of $\mathrm{V}^{\text {III }}$ precursors that has allowed us to isolate a very highly reduced, $\mathrm{V}^{\mathrm{IV}}{ }_{8} \mathrm{~V}^{\mathrm{III}}{ }_{2}$, polyoxovanadate; we are not aware of any examples with more than four metal ions in the literature to date. Indeed low oxidation state vanadium clusters of any description are rare, ${ }^{11,12}$ although solid-state $\mathrm{V}^{\mathrm{III}}$ and $\mathrm{V}^{\mathrm{III} / \mathrm{V}}$ phosphonates are known. ${ }^{13}$ The oxidized ions form a cage round the reduced ions, and this may reflect the mechanism of formation, cluster growth being terminated by oxidation of vanadium and formation of terminal oxides.

The square faces of 1 result from four 1,3-bridging $\mathrm{Me}_{2} \mathrm{bta}{ }^{-}$ linking four metal ions via cis coordination sites, reminiscent of Stang and Fujita's $\mathrm{M}^{\mathrm{II}} 4$ molecular squares ${ }^{6}$ exploiting rigid linear bridges such as 4,4'-bipyridine and metal ions with two available $90^{\circ}$ cis-coordination sites in stoichiometric reactions. Che et al. ${ }^{14}$ have argued that rigid angular bridges [e.g., the anion of benzimidazole, analogous to 1,3 -coordinated $\mathrm{bta}^{-}$] favor formation of triangles in such reactions. Our results show that this is an oversimplification, given the $130^{\circ}$ angles between $\mathrm{N}-\mathrm{V}$ vectors in the 1,3-coordinated triazole and $\mathrm{N}-\mathrm{V}-\mathrm{N}$ angles of $93^{\circ}$ in $\mathbf{1}$.

1 undergoes a quasi-reversible reduction at -0.93 V vs $\mathrm{Fc} / \mathrm{Fc}^{+}$ in $0.5 \mathrm{M}\left({ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{BF}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, which we tentatively assign to $\mathrm{V}^{\text {III/II }}$ by comparison with the similar potential observed for a bis-alkoxide bridged $V^{\text {III }}$ dimer ${ }^{15}$ and the fact that reduction of vanadyl to $\mathrm{V}^{\mathrm{III}}$ is unlikely. No oxidative processes are observed. The magnetic properties of $\mathbf{1}$ are dominated by antiferromagnetic interactions: the room-temperature value of $\chi T$ ( $\chi=$ molar magnetic susceptibility) is $3.3 \mathrm{~cm}^{3} \mathrm{Kmol}^{-1}$, below the value expected for
eight VIV and two V ${ }^{\text {III }}$ uncoupled ions, already rapidly decreasing with decreasing temperature and tending toward zero indicating a diamagnetic ground state (Figure S2). We have fitted $\chi(T)$ based on a three unique $J$-value model, considering only metal ions connected by single-atom bridges: between $\mathrm{V}^{\mathrm{IV}}$ ions on the short edges of the box $\left(J_{1}\right)$, between $\mathrm{V}^{\text {IV }}$ and $\mathrm{V}^{\text {III }}$ ions $\left(J_{2}\right)$, and between the two $\mathrm{V}^{\text {III }}$ ions $\left(J_{3}\right)$. This gives $J_{1}=246 \mathrm{~cm}^{-1}, J_{2}=39 \mathrm{~cm}^{-1}$, and $J_{3}=45 \mathrm{~cm}^{-1}$ (all antiferromagnetic) with $g=1.99$ (Figure S2). The strong $J_{1}$ is consistent with the face-sharing (i.e., three single-atom bridges) $\mathrm{V}^{\text {IV }}$ ions, while $J_{3}$ is within the range found for bis-alkoxide bridged $V^{\text {III }}$ dimers. ${ }^{16}$

We are now attempting to isolate larger and more reduced (higher $\mathrm{V}^{\mathrm{III}} / \mathrm{V}^{\mathrm{IV}}$ ratio) analogues of $\mathbf{1}$ by controlling the oxidation of the $\mathrm{V}^{\text {III }}$ precursors.

Acknowledgment. We thank The Leverhulme Trust, the EPSRC, and the EC ("Magmanet") for funding and Prof R. Sessoli (Florence) for helpful discussions.

Supporting Information Available: Full atom labeling (including disorder), $\chi$ and $\chi T$ vs $T$ and fits, thermal ellipsoid plot, cif file. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

(1) For example, see: Khan, M. I.; Zubieta, J. Prog. Inorg. Chem. 1995, 43, 1. Chen, Q.; Zubieta, J. Coord. Chem. Rev. 1992, 114, 107.
(2) For example, see: Khan, M. I.; Chen, Q.; Zubieta, J. J. Am. Chem. Soc. 1993, 32, 672. Bontchev, R. P.; Do, J.; Jacobsen, A. J. Angew. Chem., Int. Ed. 1999, 38, 1937. Hegetschweiler, K.; Morgenstern, B.; Zubieta, J.; Hagrman, P. J.; Lima, N.; Sessoli, R.; Totti, F. Angew. Chem., Int. Ed. 2004, 43, 3436.
(3) Daniel, C.; Hartl, H. J. Am. Chem. Soc. 2005, 127, 13978.
(4) Müller, A.; Peters, F.; Pope, M. T.; Gatteschi, D. Chem. Rev. 1998, 98, 239. Gatteschi, D.; Pardi, L.; Barra, A.-L.; Müller, A.; Doring, J. Nature 1992, 354, 463.
(5) Low, D. M.; Jones, L. F.; Bell, A.; Brechin, E. K.; Mallah, T.; Rivière, E.; Teat, S. J.; McInnes E. J. L. Angew. Chem., Int. Ed. 2003, 42, 3781. Evangelisti, M.; Candini, A.; Ghirri, A.; Affronte, M.; Brechin, E. K.; McInnes, E. J. L. Appl. Phys. Lett. 2005, 87, 072504.
(6) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Rev. 2005, 38, 371.
(7) Microanalysis of 1: calcd for $\mathrm{C}_{74} \mathrm{H}_{98} \mathrm{~N}_{24} \mathrm{O}_{22} \mathrm{~V}_{10}$ : C, $40.67 ; \mathrm{H}, 4.52 ; \mathrm{N}$, 15.38. Found: C, $40.58 ; \mathrm{H}, 4.86 ; \mathrm{N}, 14.47$. X-ray details of $\mathbf{1}$ : $\mathrm{C}_{74} \mathrm{H}_{98} \mathrm{~N}_{24} \mathrm{O}_{22} \mathrm{~V}_{10}$, 2185.16, tetragonal, I4/mmm, orange crystal, $a=b=$ $17.4950(18) \AA, c=18.5306(19) \AA, T=150 \mathrm{~K}, Z=2, R=0.0783$, GOF $=1.132$.
(8) The molecule is disordered over two perpendicular orientations. This has no effect on the $\mathrm{V}^{\text {IV }}$ positions, but the two $\mathrm{V}^{\mathrm{III}}$ ions are disordered over the two sites with 60:40 occupancy. These four partial occupancy sites were also observed when the crystal structure was solved in $P 1$ so, although $\mathbf{1}$ has only two-fold symmetry, the structure was solved in a tetragonal space group as this was considered the more favorable for the packing of the metal ions. A similar disorder of a dimer over three perpendicular positions, being positioned on a special site in a high crystal symmetry, has been observed; see: Cotton, F. A.; Daniels, L. M.; Shang, M.; Yao, Z. Inorg. Chim. Acta 1994, 215, 103.
(9) Brown, I. D.; Shannon, R. D. Acta Crystallogr. 1973, A29, 266. Brown, I. D.; Wu, K. K. Acta Crystallogr. 1976, B32, 1957. Liu, W.; Thorp, H. H. Inorg. Chem. 1993, 32, 4102.
(10) Figure 1a shows that there are large holes between O3 and the uncoordinated nitrogens where the protons could be accommodated. Thus, an alternative formulation of $\mathbf{1}$ is as $\left[(\mathrm{VO})_{8} \mathrm{~V}_{2}\left(\mathrm{Me}_{2} \mathrm{bta}\right)_{4}\left(\mathrm{Me}_{2} \mathrm{btaH}\right)_{4}(\mathrm{O})_{4^{-}}\right.$ ( OMe$)_{10}$ ] where the four $\mu_{2}-\mathrm{Me}_{2}$ bta are protonated and O 3 is oxide.
(11) Castro, S. L.; Sun, C. M.; Grant, C. M.; Bollinger, J. C.; Hendrickson, D. N.; Christou G. J. Am. Chem. Soc. 1998, 120, 2365.
(12) Laye, R. H.; Murrie, M.; Ochsenbein, S.; Bell, A. R.; Teat, S. J.; Raftery, J.; Güdel, H. U.; McInnes, E. J. L. Chem.-Eur. J. 2003, 9, 6215.
(13) Soghomonian, V.; Haushalter, R. C.; Zubieta, J. Chem. Mater. 1995, 7, 1648. Haushalter, R. C.; Wang, Z.; Thompson, M. E.; Zubieta, J. Inorg. Chem. 1993, 32, 3700.
(14) Lai, S.-W.; Chan, M. C.-W.; Peng, S.-M.; Che, C.-M. Angew. Chem., Int. Ed. 1999, 38, 669.
(15) Kruger, P. E.; Moubaraki, B.; Murray, K. S. Dalton Trans. 1996, 1223.
(16) Kanamori, K. Coord. Chem. Rev. 2003, 237, 147.

JA062723+


[^0]:    $\dagger$ The University of Manchester.
    \# CCLRC Daresbury Laboratory.

